Skip to content
Snippets Groups Projects
check-vulkan.cpp 36.01 KiB
/*
 * Copyright (c) 2012 Arvin Schnell <arvin.schnell@gmail.com>
 * Copyright (c) 2012 Rob Clark <rob@ti.com>
 * Copyright © 2015 Intel Corporation
 * Copyright © 2019 Collabora Ltd.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/* Portions of this code were taken from vulkan-tutorial.com which is
   Licensed as CC0 1.0 Universal. Other parts were taken from vkcube which
   is licensed as Apache 2.0
   */

#define VK_USE_PLATFORM_XCB_KHR
#include <vulkan/vulkan.h>

#include <iostream>
#include <fstream>
#include <stdexcept>
#include <algorithm>
#include <vector>
#include <cstring>
#include <cstdlib>
#include <cstdint>
#include <set>

extern "C" {
#include <getopt.h>
};

const int WIDTH = 200;
const int HEIGHT = 200;

const int MAX_FRAMES_IN_FLIGHT = 2;

static const char *argv0;

const std::vector<const char*> deviceExtensions = {
    VK_KHR_SWAPCHAIN_EXTENSION_NAME
};

struct QueueFamilyIndices {
    uint32_t graphicsFamily;
    uint32_t presentFamily;
    bool hasGraphicsFamily;
    bool hasPresentFamily;

    bool isComplete() {
        return hasGraphicsFamily && hasPresentFamily;
    }
};

struct SwapChainSupportDetails {
    VkSurfaceCapabilitiesKHR capabilities;
    std::vector<VkSurfaceFormatKHR> formats;
    std::vector<VkPresentModeKHR> presentModes;
};

static xcb_atom_t
get_atom(struct xcb_connection_t *conn, const char *name)
{
  xcb_intern_atom_cookie_t cookie;
  xcb_intern_atom_reply_t *reply;
  xcb_atom_t atom;

  cookie = xcb_intern_atom(conn, 0, strlen(name), name);
  reply = xcb_intern_atom_reply(conn, cookie, NULL);
  if (reply)
    atom = reply->atom;
  else
    atom = XCB_NONE;

  free(reply);
  return atom;
}

class HelloTriangleApplication {
public:
    HelloTriangleApplication(bool is_visible)
        : visible(is_visible)
    {
    }

    void run() {
        initVulkan();
        mainLoop();
        cleanup();
    }

private:
    VkInstance instance;
    VkSurfaceKHR surface;

    VkPhysicalDevice physicalDevice = VK_NULL_HANDLE;
    VkDevice device;

    VkQueue graphicsQueue;
    VkQueue presentQueue;

    VkSwapchainKHR swapChain;
    std::vector<VkImage> swapChainImages;
    VkFormat swapChainImageFormat;
    VkExtent2D swapChainExtent;
    std::vector<VkImageView> swapChainImageViews;
    std::vector<VkFramebuffer> swapChainFramebuffers;

    VkRenderPass renderPass;
    VkPipelineLayout pipelineLayout;
    VkPipeline graphicsPipeline;

    VkCommandPool commandPool;
    std::vector<VkCommandBuffer> commandBuffers;

    std::vector<VkSemaphore> imageAvailableSemaphores;
    std::vector<VkSemaphore> renderFinishedSemaphores;
    std::vector<VkFence> inFlightFences;
    size_t currentFrame = 0;
    bool visible;

    void initVulkan() {
        createInstance();
        pickPhysicalDevice();
        createSurface();
        createLogicalDevice();
        createSwapChain();
        createImageViews();
        createRenderPass();
        createGraphicsPipeline();
        createFramebuffers();
        createCommandPool();
        createCommandBuffers();
        createSyncObjects();
    }

    void mainLoop() {
      for (int i = 0; i < (visible ? 10000 : 10); ++i) {
            drawFrame();
        }

        vkDeviceWaitIdle(device);
    }

    void cleanup() {
        for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
            vkDestroySemaphore(device, renderFinishedSemaphores[i], nullptr);
            vkDestroySemaphore(device, imageAvailableSemaphores[i], nullptr);
            vkDestroyFence(device, inFlightFences[i], nullptr);
        }

        vkDestroyCommandPool(device, commandPool, nullptr);

        for (auto framebuffer : swapChainFramebuffers) {
            vkDestroyFramebuffer(device, framebuffer, nullptr);
        }

        vkDestroyPipeline(device, graphicsPipeline, nullptr);
        vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
        vkDestroyRenderPass(device, renderPass, nullptr);

        for (auto imageView : swapChainImageViews) {
            vkDestroyImageView(device, imageView, nullptr);
        }

        vkDestroySwapchainKHR(device, swapChain, nullptr);
        vkDestroyDevice(device, nullptr);

        vkDestroySurfaceKHR(instance, surface, nullptr);
        vkDestroyInstance(instance, nullptr);
    }

    void createInstance() {
        VkApplicationInfo appInfo = {};
        appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
        appInfo.pApplicationName = "Hello Triangle";
        appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0);
        appInfo.pEngineName = "No Engine";
        appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0);
        appInfo.apiVersion = VK_API_VERSION_1_0;

        VkInstanceCreateInfo createInfo = {};
        createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
        createInfo.pApplicationInfo = &appInfo;

        auto extensions = getRequiredExtensions();
        createInfo.enabledExtensionCount = static_cast<uint32_t>(extensions.size());
        createInfo.ppEnabledExtensionNames = extensions.data();

        createInfo.enabledLayerCount = 0;

        createInfo.pNext = nullptr;

        if (vkCreateInstance(&createInfo, nullptr, &instance) != VK_SUCCESS) {
            throw std::runtime_error("failed to create instance!");
        }
    }

    void createSurface() {
        xcb_connection_t *xcb_connection;
        static const char title[] = "Vulkan Test";

        xcb_connection = xcb_connect(0, 0);
        if (xcb_connection_has_error (xcb_connection))
          {
            throw std::runtime_error("Unable to initialize xcb connection");
          }

        uint32_t xcb_window = xcb_generate_id(xcb_connection);

        uint32_t window_values[] = {
          XCB_EVENT_MASK_EXPOSURE |
          XCB_EVENT_MASK_STRUCTURE_NOTIFY |
          XCB_EVENT_MASK_KEY_PRESS
        };

        xcb_screen_iterator_t iter = xcb_setup_roots_iterator(xcb_get_setup(xcb_connection));

        xcb_create_window(xcb_connection,
                          XCB_COPY_FROM_PARENT,
                          xcb_window,
                          iter.data->root,
                          0, 0,
                          200,
                          200,
                          0,
                          XCB_WINDOW_CLASS_INPUT_OUTPUT,
                          iter.data->root_visual,
                          XCB_CW_EVENT_MASK, window_values);

        xcb_atom_t atom_wm_protocols = get_atom(xcb_connection, "WM_PROTOCOLS");
        xcb_atom_t atom_wm_delete_window = get_atom(xcb_connection, "WM_DELETE_WINDOW");
        xcb_change_property(xcb_connection,
                            XCB_PROP_MODE_REPLACE,
                            xcb_window,
                            atom_wm_protocols,
                            XCB_ATOM_ATOM,
                            32,
                            1, &atom_wm_delete_window);

        xcb_change_property(xcb_connection,
                            XCB_PROP_MODE_REPLACE,
                            xcb_window,
                            get_atom(xcb_connection, "_NET_WM_NAME"),
                            get_atom(xcb_connection, "UTF8_STRING"),
                            8,
                            strlen(title), title);

        // we don't normally want this test to be visible to the user
        if (visible) {
            xcb_map_window(xcb_connection, xcb_window);
        }

        xcb_flush(xcb_connection);

        PFN_vkGetPhysicalDeviceXcbPresentationSupportKHR get_xcb_presentation_support =
          (PFN_vkGetPhysicalDeviceXcbPresentationSupportKHR)
          vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceXcbPresentationSupportKHR");
        PFN_vkCreateXcbSurfaceKHR create_xcb_surface =
          (PFN_vkCreateXcbSurfaceKHR)
          vkGetInstanceProcAddr(instance, "vkCreateXcbSurfaceKHR");

        if (!get_xcb_presentation_support(physicalDevice, 0,
                                          xcb_connection,
                                          iter.data->root_visual)) {
          throw std::runtime_error("Vulkan not supported on given X window");
        }

        VkXcbSurfaceCreateInfoKHR createSurfaceInfo;
        createSurfaceInfo.sType = VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR;
        createSurfaceInfo.connection = xcb_connection;
        createSurfaceInfo.window = xcb_window;

        create_xcb_surface(instance, &createSurfaceInfo, NULL, &surface);
    }

    void pickPhysicalDevice() {
        uint32_t deviceCount = 0;
        vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr);

        if (deviceCount == 0) {
            throw std::runtime_error("failed to find GPUs with Vulkan support!");
        }

        VkPhysicalDevice devices[deviceCount];
        vkEnumeratePhysicalDevices(instance, &deviceCount, devices);

        if (deviceCount > 0)
          physicalDevice = devices[0];

       if (physicalDevice == VK_NULL_HANDLE) {
            throw std::runtime_error("failed to find a suitable GPU!");
        }
    }

    void createLogicalDevice() {
        QueueFamilyIndices indices = findQueueFamilies(physicalDevice);

        std::vector<VkDeviceQueueCreateInfo> queueCreateInfos;
        std::set<uint32_t> uniqueQueueFamilies = {indices.graphicsFamily, indices.presentFamily};

        float queuePriority = 1.0f;
        for (uint32_t queueFamily : uniqueQueueFamilies) {
            VkDeviceQueueCreateInfo queueCreateInfo = {};
            queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
            queueCreateInfo.queueFamilyIndex = queueFamily;
            queueCreateInfo.queueCount = 1;
            queueCreateInfo.pQueuePriorities = &queuePriority;
            queueCreateInfos.push_back(queueCreateInfo);
        }

        VkPhysicalDeviceFeatures deviceFeatures = {};

        VkDeviceCreateInfo createInfo = {};
        createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;

        createInfo.queueCreateInfoCount = static_cast<uint32_t>(queueCreateInfos.size());
        createInfo.pQueueCreateInfos = queueCreateInfos.data();

        createInfo.pEnabledFeatures = &deviceFeatures;

        createInfo.enabledExtensionCount = static_cast<uint32_t>(deviceExtensions.size());
        createInfo.ppEnabledExtensionNames = deviceExtensions.data();

        createInfo.enabledLayerCount = 0;

        if (vkCreateDevice(physicalDevice, &createInfo, nullptr, &device) != VK_SUCCESS) {
            throw std::runtime_error("failed to create logical device!");
        }

        vkGetDeviceQueue(device, indices.graphicsFamily, 0, &graphicsQueue);
        vkGetDeviceQueue(device, indices.presentFamily, 0, &presentQueue);
    }

    void createSwapChain() {
        SwapChainSupportDetails swapChainSupport = querySwapChainSupport(physicalDevice);

        VkSurfaceFormatKHR surfaceFormat = chooseSwapSurfaceFormat(swapChainSupport.formats);
        VkPresentModeKHR presentMode = chooseSwapPresentMode(swapChainSupport.presentModes);
        VkExtent2D extent = chooseSwapExtent(swapChainSupport.capabilities);

        uint32_t imageCount = swapChainSupport.capabilities.minImageCount + 1;
        if (swapChainSupport.capabilities.maxImageCount > 0 && imageCount > swapChainSupport.capabilities.maxImageCount) {
            imageCount = swapChainSupport.capabilities.maxImageCount;
        }

        VkSwapchainCreateInfoKHR createInfo = {};
        createInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
        createInfo.surface = surface;

        createInfo.minImageCount = imageCount;
        createInfo.imageFormat = surfaceFormat.format;
        createInfo.imageColorSpace = surfaceFormat.colorSpace;
        createInfo.imageExtent = extent;
        createInfo.imageArrayLayers = 1;
        createInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;

        QueueFamilyIndices indices = findQueueFamilies(physicalDevice);
        uint32_t queueFamilyIndices[] = {indices.graphicsFamily, indices.presentFamily};

        if (indices.graphicsFamily != indices.presentFamily) {
            createInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT;
            createInfo.queueFamilyIndexCount = 2;
            createInfo.pQueueFamilyIndices = queueFamilyIndices;
        } else {
            createInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
        }

        createInfo.preTransform = swapChainSupport.capabilities.currentTransform;
        createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
        createInfo.presentMode = presentMode;
        createInfo.clipped = VK_TRUE;

        createInfo.oldSwapchain = VK_NULL_HANDLE;

        if (vkCreateSwapchainKHR(device, &createInfo, nullptr, &swapChain) != VK_SUCCESS) {
            throw std::runtime_error("failed to create swap chain!");
        }

        vkGetSwapchainImagesKHR(device, swapChain, &imageCount, nullptr);
        swapChainImages.resize(imageCount);
        vkGetSwapchainImagesKHR(device, swapChain, &imageCount, swapChainImages.data());

        swapChainImageFormat = surfaceFormat.format;
        swapChainExtent = extent;
    }

    void createImageViews() {
        swapChainImageViews.resize(swapChainImages.size());

        for (size_t i = 0; i < swapChainImages.size(); i++) {
            VkImageViewCreateInfo createInfo = {};
            createInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
            createInfo.image = swapChainImages[i];
            createInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
            createInfo.format = swapChainImageFormat;
            createInfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY;
            createInfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY;
            createInfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY;
            createInfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY;
            createInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
            createInfo.subresourceRange.baseMipLevel = 0;
            createInfo.subresourceRange.levelCount = 1;
            createInfo.subresourceRange.baseArrayLayer = 0;
            createInfo.subresourceRange.layerCount = 1;

            if (vkCreateImageView(device, &createInfo, nullptr, &swapChainImageViews[i]) != VK_SUCCESS) {
                throw std::runtime_error("failed to create image views!");
            }
        }
    }

    void createRenderPass() {
        VkAttachmentDescription colorAttachment = {};
        colorAttachment.format = swapChainImageFormat;
        colorAttachment.samples = VK_SAMPLE_COUNT_1_BIT;
        colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
        colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
        colorAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
        colorAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
        colorAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
        colorAttachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;

        VkAttachmentReference colorAttachmentRef = {};
        colorAttachmentRef.attachment = 0;
        colorAttachmentRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;

        VkSubpassDescription subpass = {};
        subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
        subpass.colorAttachmentCount = 1;
        subpass.pColorAttachments = &colorAttachmentRef;

        VkSubpassDependency dependency = {};
        dependency.srcSubpass = VK_SUBPASS_EXTERNAL;
        dependency.dstSubpass = 0;
        dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
        dependency.srcAccessMask = 0;
        dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
        dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;

        VkRenderPassCreateInfo renderPassInfo = {};
        renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
        renderPassInfo.attachmentCount = 1;
        renderPassInfo.pAttachments = &colorAttachment;
        renderPassInfo.subpassCount = 1;
        renderPassInfo.pSubpasses = &subpass;
        renderPassInfo.dependencyCount = 1;
        renderPassInfo.pDependencies = &dependency;

        if (vkCreateRenderPass(device, &renderPassInfo, nullptr, &renderPass) != VK_SUCCESS) {
            throw std::runtime_error("failed to create render pass!");
        }
    }

    void createGraphicsPipeline() {
        std::string shadersPath;
        if (getenv("SRT_DATA_PATH"))
          {
            shadersPath = getenv("SRT_DATA_PATH");
          }
        else
          {
              shadersPath = argv0;
              size_t lastSlash = shadersPath.rfind('/');
              if (lastSlash != std::string::npos)
                shadersPath.resize(lastSlash);

              shadersPath += "/shaders";
          }

        auto vertShaderCode = readFile(shadersPath + "/vert.spv");
        auto fragShaderCode = readFile(shadersPath + "/frag.spv");

        VkShaderModule vertShaderModule = createShaderModule(vertShaderCode);
        VkShaderModule fragShaderModule = createShaderModule(fragShaderCode);

        VkPipelineShaderStageCreateInfo vertShaderStageInfo = {};
        vertShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
        vertShaderStageInfo.stage = VK_SHADER_STAGE_VERTEX_BIT;
        vertShaderStageInfo.module = vertShaderModule;
        vertShaderStageInfo.pName = "main";

        VkPipelineShaderStageCreateInfo fragShaderStageInfo = {};
        fragShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
        fragShaderStageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT;
        fragShaderStageInfo.module = fragShaderModule;
        fragShaderStageInfo.pName = "main";

        VkPipelineShaderStageCreateInfo shaderStages[] = {vertShaderStageInfo, fragShaderStageInfo};

        VkPipelineVertexInputStateCreateInfo vertexInputInfo = {};
        vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
        vertexInputInfo.vertexBindingDescriptionCount = 0;
        vertexInputInfo.vertexAttributeDescriptionCount = 0;

        VkPipelineInputAssemblyStateCreateInfo inputAssembly = {};
        inputAssembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
        inputAssembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
        inputAssembly.primitiveRestartEnable = VK_FALSE;

        VkViewport viewport = {};
        viewport.x = 0.0f;
        viewport.y = 0.0f;
        viewport.width = (float) swapChainExtent.width;
        viewport.height = (float) swapChainExtent.height;
        viewport.minDepth = 0.0f;
        viewport.maxDepth = 1.0f;

        VkRect2D scissor = {};
        scissor.offset = {0, 0};
        scissor.extent = swapChainExtent;

        VkPipelineViewportStateCreateInfo viewportState = {};
        viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
        viewportState.viewportCount = 1;
        viewportState.pViewports = &viewport;
        viewportState.scissorCount = 1;
        viewportState.pScissors = &scissor;

        VkPipelineRasterizationStateCreateInfo rasterizer = {};
        rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
        rasterizer.depthClampEnable = VK_FALSE;
        rasterizer.rasterizerDiscardEnable = VK_FALSE;
        rasterizer.polygonMode = VK_POLYGON_MODE_FILL;
        rasterizer.lineWidth = 1.0f;
        rasterizer.cullMode = VK_CULL_MODE_BACK_BIT;
        rasterizer.frontFace = VK_FRONT_FACE_CLOCKWISE;
        rasterizer.depthBiasEnable = VK_FALSE;

        VkPipelineMultisampleStateCreateInfo multisampling = {};
        multisampling.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
        multisampling.sampleShadingEnable = VK_FALSE;
        multisampling.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;

        VkPipelineColorBlendAttachmentState colorBlendAttachment = {};
        colorBlendAttachment.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
        colorBlendAttachment.blendEnable = VK_FALSE;

        VkPipelineColorBlendStateCreateInfo colorBlending = {};
        colorBlending.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
        colorBlending.logicOpEnable = VK_FALSE;
        colorBlending.logicOp = VK_LOGIC_OP_COPY;
        colorBlending.attachmentCount = 1;
        colorBlending.pAttachments = &colorBlendAttachment;
        colorBlending.blendConstants[0] = 0.0f;
        colorBlending.blendConstants[1] = 0.0f;
        colorBlending.blendConstants[2] = 0.0f;
        colorBlending.blendConstants[3] = 0.0f;
        VkPipelineLayoutCreateInfo pipelineLayoutInfo = {};
        pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
        pipelineLayoutInfo.setLayoutCount = 0;
        pipelineLayoutInfo.pushConstantRangeCount = 0;

        if (vkCreatePipelineLayout(device, &pipelineLayoutInfo, nullptr, &pipelineLayout) != VK_SUCCESS) {
            throw std::runtime_error("failed to create pipeline layout!");
        }

        VkGraphicsPipelineCreateInfo pipelineInfo = {};
        pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
        pipelineInfo.stageCount = 2;
        pipelineInfo.pStages = shaderStages;
        pipelineInfo.pVertexInputState = &vertexInputInfo;
        pipelineInfo.pInputAssemblyState = &inputAssembly;
        pipelineInfo.pViewportState = &viewportState;
        pipelineInfo.pRasterizationState = &rasterizer;
        pipelineInfo.pMultisampleState = &multisampling;
        pipelineInfo.pColorBlendState = &colorBlending;
        pipelineInfo.layout = pipelineLayout;
        pipelineInfo.renderPass = renderPass;
        pipelineInfo.subpass = 0;
        pipelineInfo.basePipelineHandle = VK_NULL_HANDLE;

        if (vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &pipelineInfo, nullptr, &graphicsPipeline) != VK_SUCCESS) {
            throw std::runtime_error("failed to create graphics pipeline!");
        }

        vkDestroyShaderModule(device, fragShaderModule, nullptr);
        vkDestroyShaderModule(device, vertShaderModule, nullptr);
    }

    void createFramebuffers() {
        swapChainFramebuffers.resize(swapChainImageViews.size());

        for (size_t i = 0; i < swapChainImageViews.size(); i++) {
            VkImageView attachments[] = {
                swapChainImageViews[i]
            };

            VkFramebufferCreateInfo framebufferInfo = {};
            framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
            framebufferInfo.renderPass = renderPass;
            framebufferInfo.attachmentCount = 1;
            framebufferInfo.pAttachments = attachments;
            framebufferInfo.width = swapChainExtent.width;
            framebufferInfo.height = swapChainExtent.height;
            framebufferInfo.layers = 1;

            if (vkCreateFramebuffer(device, &framebufferInfo, nullptr, &swapChainFramebuffers[i]) != VK_SUCCESS) {
                throw std::runtime_error("failed to create framebuffer!");
            }
        }
    }

    void createCommandPool() {
        QueueFamilyIndices queueFamilyIndices = findQueueFamilies(physicalDevice);

        VkCommandPoolCreateInfo poolInfo = {};
        poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
        poolInfo.queueFamilyIndex = queueFamilyIndices.graphicsFamily;

        if (vkCreateCommandPool(device, &poolInfo, nullptr, &commandPool) != VK_SUCCESS) {
            throw std::runtime_error("failed to create command pool!");
        }
    }

    void createCommandBuffers() {
        commandBuffers.resize(swapChainFramebuffers.size());
        VkCommandBufferAllocateInfo allocInfo = {};
        allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
        allocInfo.commandPool = commandPool;
        allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
        allocInfo.commandBufferCount = (uint32_t) commandBuffers.size();

        if (vkAllocateCommandBuffers(device, &allocInfo, commandBuffers.data()) != VK_SUCCESS) {
            throw std::runtime_error("failed to allocate command buffers!");
        }

        for (size_t i = 0; i < commandBuffers.size(); i++) {
            VkCommandBufferBeginInfo beginInfo = {};
            beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;

            if (vkBeginCommandBuffer(commandBuffers[i], &beginInfo) != VK_SUCCESS) {
                throw std::runtime_error("failed to begin recording command buffer!");
            }

            VkRenderPassBeginInfo renderPassInfo = {};
            renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
            renderPassInfo.renderPass = renderPass;
            renderPassInfo.framebuffer = swapChainFramebuffers[i];
            renderPassInfo.renderArea.offset = {0, 0};
            renderPassInfo.renderArea.extent = swapChainExtent;

            VkClearValue clearColor = { { {0.0f, 0.0f, 0.0f, 1.0f} } };
            renderPassInfo.clearValueCount = 1;
            renderPassInfo.pClearValues = &clearColor;

            vkCmdBeginRenderPass(commandBuffers[i], &renderPassInfo, VK_SUBPASS_CONTENTS_INLINE);

                vkCmdBindPipeline(commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipeline);

                vkCmdDraw(commandBuffers[i], 3, 1, 0, 0);

            vkCmdEndRenderPass(commandBuffers[i]);

            if (vkEndCommandBuffer(commandBuffers[i]) != VK_SUCCESS) {
                throw std::runtime_error("failed to record command buffer!");
            }
        }
    }

    void createSyncObjects() {
        imageAvailableSemaphores.resize(MAX_FRAMES_IN_FLIGHT);
        renderFinishedSemaphores.resize(MAX_FRAMES_IN_FLIGHT);
        inFlightFences.resize(MAX_FRAMES_IN_FLIGHT);

        VkSemaphoreCreateInfo semaphoreInfo = {};
        semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;

        VkFenceCreateInfo fenceInfo = {};
        fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
        fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT;

        for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
            if (vkCreateSemaphore(device, &semaphoreInfo, nullptr, &imageAvailableSemaphores[i]) != VK_SUCCESS ||
                vkCreateSemaphore(device, &semaphoreInfo, nullptr, &renderFinishedSemaphores[i]) != VK_SUCCESS ||
                vkCreateFence(device, &fenceInfo, nullptr, &inFlightFences[i]) != VK_SUCCESS) {
                throw std::runtime_error("failed to create synchronization objects for a frame!");
            }
        }
    }

    void drawFrame() {
        vkWaitForFences(device, 1, &inFlightFences[currentFrame], VK_TRUE, UINT64_MAX);
        vkResetFences(device, 1, &inFlightFences[currentFrame]);

        uint32_t imageIndex;
        vkAcquireNextImageKHR(device, swapChain, UINT64_MAX, imageAvailableSemaphores[currentFrame], VK_NULL_HANDLE, &imageIndex);

        VkSubmitInfo submitInfo = {};
        submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;

        VkSemaphore waitSemaphores[] = {imageAvailableSemaphores[currentFrame]};
        VkPipelineStageFlags waitStages[] = {VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT};
        submitInfo.waitSemaphoreCount = 1;
        submitInfo.pWaitSemaphores = waitSemaphores;
        submitInfo.pWaitDstStageMask = waitStages;

        submitInfo.commandBufferCount = 1;
        submitInfo.pCommandBuffers = &commandBuffers[imageIndex];

        VkSemaphore signalSemaphores[] = {renderFinishedSemaphores[currentFrame]};
        submitInfo.signalSemaphoreCount = 1;
        submitInfo.pSignalSemaphores = signalSemaphores;

        if (vkQueueSubmit(graphicsQueue, 1, &submitInfo, inFlightFences[currentFrame]) != VK_SUCCESS) {
            throw std::runtime_error("failed to submit draw command buffer!");
        }

        VkPresentInfoKHR presentInfo = {};
        presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;

        presentInfo.waitSemaphoreCount = 1;
        presentInfo.pWaitSemaphores = signalSemaphores;

        VkSwapchainKHR swapChains[] = {swapChain};
        presentInfo.swapchainCount = 1;
        presentInfo.pSwapchains = swapChains;

        presentInfo.pImageIndices = &imageIndex;

        vkQueuePresentKHR(presentQueue, &presentInfo);

        currentFrame = (currentFrame + 1) % MAX_FRAMES_IN_FLIGHT;
    }

    VkShaderModule createShaderModule(const std::vector<char>& code) {
        VkShaderModuleCreateInfo createInfo = {};
        createInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
        createInfo.codeSize = code.size();
        createInfo.pCode = reinterpret_cast<const uint32_t*>(code.data());

        VkShaderModule shaderModule;
        if (vkCreateShaderModule(device, &createInfo, nullptr, &shaderModule) != VK_SUCCESS) {
            throw std::runtime_error("failed to create shader module!");
        }

        return shaderModule;
    }

    VkSurfaceFormatKHR chooseSwapSurfaceFormat(const std::vector<VkSurfaceFormatKHR>& availableFormats) {
        for (const auto& availableFormat : availableFormats) {
            if (availableFormat.format == VK_FORMAT_B8G8R8A8_UNORM && availableFormat.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR) {
                return availableFormat;
            }
        }

        return availableFormats[0];
    }

    VkPresentModeKHR chooseSwapPresentMode(const std::vector<VkPresentModeKHR>& availablePresentModes) {
        for (const auto& availablePresentMode : availablePresentModes) {
            if (availablePresentMode == VK_PRESENT_MODE_MAILBOX_KHR) {
                return availablePresentMode;
            }
        }

        return VK_PRESENT_MODE_FIFO_KHR;
    }

    VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR& capabilities) {
        if (capabilities.currentExtent.width != UINT32_MAX) {
            return capabilities.currentExtent;
        } else {
            VkExtent2D actualExtent = {WIDTH, HEIGHT};

            actualExtent.width = std::max(capabilities.minImageExtent.width, std::min(capabilities.maxImageExtent.width, actualExtent.width));
            actualExtent.height = std::max(capabilities.minImageExtent.height, std::min(capabilities.maxImageExtent.height, actualExtent.height));

            return actualExtent;
        }
    }

    SwapChainSupportDetails querySwapChainSupport(VkPhysicalDevice dev) {
        SwapChainSupportDetails details;

        vkGetPhysicalDeviceSurfaceCapabilitiesKHR(dev, surface, &details.capabilities);

        uint32_t formatCount;
        vkGetPhysicalDeviceSurfaceFormatsKHR(dev, surface, &formatCount, nullptr);

        if (formatCount != 0) {
            details.formats.resize(formatCount);
            vkGetPhysicalDeviceSurfaceFormatsKHR(dev, surface, &formatCount, details.formats.data());
        }

        uint32_t presentModeCount;
        vkGetPhysicalDeviceSurfacePresentModesKHR(dev, surface, &presentModeCount, nullptr);

        if (presentModeCount != 0) {
            details.presentModes.resize(presentModeCount);
            vkGetPhysicalDeviceSurfacePresentModesKHR(dev, surface, &presentModeCount, details.presentModes.data());
        }

        return details;
    }

    bool isDeviceSuitable(VkPhysicalDevice dev) {
        QueueFamilyIndices indices = findQueueFamilies(dev);

        bool extensionsSupported = checkDeviceExtensionSupport(dev);

        bool swapChainAdequate = false;
        if (extensionsSupported) {
            SwapChainSupportDetails swapChainSupport = querySwapChainSupport(dev);
            swapChainAdequate = !swapChainSupport.formats.empty() && !swapChainSupport.presentModes.empty();
        }

        return indices.isComplete() && extensionsSupported && swapChainAdequate;
    }

    bool checkDeviceExtensionSupport(VkPhysicalDevice dev) {
        uint32_t extensionCount;
        vkEnumerateDeviceExtensionProperties(dev, nullptr, &extensionCount, nullptr);

        std::vector<VkExtensionProperties> availableExtensions(extensionCount);
        vkEnumerateDeviceExtensionProperties(dev, nullptr, &extensionCount, availableExtensions.data());

        std::set<std::string> requiredExtensions(deviceExtensions.begin(), deviceExtensions.end());

        for (const auto& extension : availableExtensions) {
            requiredExtensions.erase(extension.extensionName);
        }

        return requiredExtensions.empty();
    }

    QueueFamilyIndices findQueueFamilies(VkPhysicalDevice dev) {
        QueueFamilyIndices indices;
        indices.hasGraphicsFamily = false;
        indices.hasPresentFamily = false;

        uint32_t queueFamilyCount = 0;
        vkGetPhysicalDeviceQueueFamilyProperties(dev, &queueFamilyCount, nullptr);

        std::vector<VkQueueFamilyProperties> queueFamilies(queueFamilyCount);
        vkGetPhysicalDeviceQueueFamilyProperties(dev, &queueFamilyCount, queueFamilies.data());

        int i = 0;
        for (const auto& queueFamily : queueFamilies) {
            if (queueFamily.queueCount > 0 && queueFamily.queueFlags & VK_QUEUE_GRAPHICS_BIT) {
                indices.graphicsFamily = i;
                indices.hasGraphicsFamily = true;
            }

            VkBool32 presentSupport = false;
            vkGetPhysicalDeviceSurfaceSupportKHR(dev, i, surface, &presentSupport);

            if (queueFamily.queueCount > 0 && presentSupport) {
                indices.presentFamily = i;
                indices.hasPresentFamily = true;
            }

            if (indices.isComplete()) {
                break;
            }

            i++;
        }

        return indices;
    }

    std::vector<const char*> getRequiredExtensions() {
        std::vector<const char*> extensions;
        extensions.push_back(VK_KHR_XCB_SURFACE_EXTENSION_NAME);
        extensions.push_back(VK_KHR_SURFACE_EXTENSION_NAME);

        return extensions;
    }

    static std::vector<char> readFile(const std::string& filename) {
        std::ifstream file(filename, std::ios::ate | std::ios::binary);

        if (!file.is_open()) {
            throw std::runtime_error("failed to open file: " + filename);
        }

        size_t fileSize = (size_t) file.tellg();
        std::vector<char> buffer(fileSize);

        file.seekg(0);
        file.read(buffer.data(), fileSize);

        file.close();

        return buffer;
    }
};

enum {
    OPTION_HELP = 1,
    OPTION_VERSION,
    OPTION_VISIBLE,
};

static struct option long_options[] = {
    { "help", no_argument, NULL, OPTION_HELP },
    { "version", no_argument, NULL, OPTION_VERSION },
    { "visible", no_argument, NULL, OPTION_VISIBLE },
    { NULL, 0, NULL, 0 }
};

static void usage(int code) __attribute__((__noreturn__));
static void usage(int code) {
    std::ostream& stream = (code == EXIT_SUCCESS ? std::cout : std::cerr);

    stream << "Usage: " << argv0 << " [OPTIONS]" << std::endl;
    stream << "Options:" << std::endl;
    stream << "--help\t\tShow this help and exit" << std::endl;
    stream << "--visible\tMake test window visible" << std::endl;
    stream << "--version\tShow version and exit" << std::endl;
    std::exit(code);
}

int main(int argc, char** argv) {
    int opt;
    bool visible = false;

    argv0 = argv[0];

    while ((opt = getopt_long(argc, argv, "", long_options, NULL)) != -1) {
        switch (opt) {
            case OPTION_HELP:
                usage(0);
                break;  // not reached

            case OPTION_VERSION:
                /* Output version number as YAML for machine-readability,
                 * inspired by `ostree --version` and `docker version` */
                std::cout << argv[0] << ":" << std::endl
                    << " Package: steam-runtime-tools" << std::endl
                    << " Version: " << VERSION << std::endl;
                return EXIT_SUCCESS;

            case OPTION_VISIBLE:
                visible = true;
                break;

            case '?':
            default:
                usage(2);
                break;  // not reached
        }
    }

    HelloTriangleApplication app(visible);

    try {
        app.run();
    } catch (const std::exception& e) {
        std::cerr << e.what() << std::endl;
        return EXIT_FAILURE;
    }

    return EXIT_SUCCESS;
}